
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing
https://doi.org/10.1007/s12652-023-04657-y

ORIGINAL RESEARCH

Structured products dynamic hedging based on reinforcement
learning

Hao Xu1 · Cheng Xu2 · He Yan3 · Yanqi Sun4

Received: 30 September 2022 / Accepted: 21 June 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
In the Black–Scholes model proposed in 1973, an investor can use a continuously rebalanced dynamic strategy to hedge the
risk of a certain option, assuming that the underlying asset’s price is subject to geometric Brownian motion (a continuous-
time stochastic process where the logarithm of the variable follows a Brownian motion) and the market is complete and
frictionless, which is unrealistic due to the continuous changes in asset prices. The application of reinforcement learning (RL)
in finance includes a variety of decision-making problems such as hedging, optimal execution, and portfolio optimization.
RL can make full use of historical data or generate more data than other theories used to make decisions in finance such
as stochastic control theory. There will be fewer assumptions and better performance with exploration and exploitation. In
this article, we propose a reinforcement learning-based model that can help investors dynamically hedge financial products
in discrete time using complex structured products: the Phoenix option (a note that only pays a coupon if the price of the
underlying asset is above a certain barrier and redeems if the price breaches an autocall barrier) as an example in this paper.
This model is highly expandable and can set an objective function according to the investor’s preferences; for example, the
Sharpe ratio (a measure of risk-adjusted return that compares the return of an investment with its risk) is very lightweight
because we do not assume the existence of an optimal hedging strategy.

Keywords  Structure products · Dynamic hedging · Reinforcement learning

1  Introduction

In the Black–Scholes model proposed in 1973, an investor
can use a continuously rebalanced dynamic strategy to hedge
the risk of a certain option. The aim of this dynamic hedging
method is to construct a risk-neutral portfolio with respect
to a certain parameter in this model, that is, the Greeks.
However, in practice, these parameters change continuously
because the price of the underlying asset changes continu-
ously. This continuous hedging strategy is unrealistic in the
case of transaction costs. Therefore, the adjustment time for
the position is discrete. Research on this hedging strategy
depends on the expansion of the Black–Scholes model and
relaxation constraints (Taleb 1997; Caldentey and Haugh
2006; Fliess and Join 2010).

Machine learning (ML) is part of artificial intelligence,
and is designed to make predictions or decisions. Recently,
ML has been increasingly applied to finance. Although
many studies have used ML methods, the specific algo-
rithms and purposes vary greatly. Some models use ML
to solve the mathematical problems in the Black–Scholes

Hao Xu and Cheng Xu contribute to the manuscript equally.

 *	 Yanqi Sun
	 bbmaksun@gmail.com

	 Hao Xu
	 kenji.xu@outlook.com

	 Cheng Xu
	 Cheng.Xu@xjtlu.edu.cn

	 He Yan
	 hyan1@babson.edu

1	 Carson College of Business, Washington State University,
Pullman, USA

2	 Department of Strategic Management and Organisations,
International Business School Suzhou, Xi’an
Jiaotong-Liverpool University, 8 Chongwen Road, Suzhou
Industrial Park, Suzhou, Jiangsu, China

3	 Babson College, Wellesley, MA, USA
4	 School of Economics and Management, Beijing Institute

of Petrochemical Technology, 19 Qingyuan North Road,
Daxing District, Beijing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-023-04657-y&domain=pdf

	 H. Xu et al.

1 3

model, while others break the Black–Scholes model frame-
work and directly use ML to establish a new framework to
analyze the hedge strategy.

In the Black–Scholes model, it is important to solve
partial differential equations (PDEs). Several methods
have been proposed to solve these problems. Barucci et al.
(1996) used the Glaerkin method and ANNs to solve the
Black–Scholes PDE. Chan-Wai-Nam, Mikael, and Warin
used ML to solve semilinear PDEs. Joo and Moon (2021)
proposed a quantum variational PDE solver with the aid
of machine-learning schemes to synergize two emerging
technologies in mathematically hard problems.

Some models are not completely dependent on the
Black–Scholes model. Gammerman and Vovk(2007) used
ML algorithms such as support vector machines (SVM),
kernel ridge regression (KRR), and kernel nearest neigh-
bors (KNN) to hedge the predictions. Das and Padhy (2017)
proposed a hybrid model that combines the Black–Scholes
option pricing model, Monte Carlo option pricing model,
and the finite difference method with support vector regres-
sion (SVR) and extreme learning machine-based regression
models. Shin and Ryu (2012) presented a methodology for a
dynamic option-hedging strategy using an ANN to enhance
hedging performance.

Recently, the development of reinforcement learning
(RL) has introduced new methods for pricing and hedging.
The first person to use reinforcement learning for hedg-
ing was Halperin (2020), who minimized the terminal
variance of the hedge portfolio based on the Markowitz
portfolio theory to obtain the optimal solution. Kolm and
Ritter (2019) built a system that can automatically learn
how to optimally hedge an option in a fully realistic setting
using RL. Buehler et al. (2019a, b) used deep reinforce-
ment machine-learning methods to establish frameworks
for portfolio hedging.

Research on hedging strategies is accompanied by a
relaxation of constraints to be closer to the real world.
The power of RL enables us to train an agent to auto-
matically obtain an optimal hedging strategy, even in a
complex environment. In this article, we propose a simple
reinforcement learning method that can train an agent and
obtain a hedging strategy that can facilitate them get-
ting more rewards than the rewards from the “buy and
hold” policy. Rewards can be customized according to
varied preferences, like the structured product itself.
Specifically, the reward function of agents trained in this
study is the Sharpe ratio, which is one of the most used
investment return indices in finance. The definition is the
difference between the expected return on the asset and
risk-free return divided by the standard deviation of the
asset return.

Compared to traditional methods, our approach is closer
to market reality as an explicit pricing formula, and the

existence of a perfect dynamic hedging strategy is unneces-
sary. Hedging is essentially an interaction with the environ-
ment, and the interaction involves acquiring new knowl-
edge and using the knowledge to improve performance.
The trade-off between the two is one of the most fundamen-
tal trade-offs in nature, and optimal performance usually
requires a balance between exploratory and exploitative
behavior (Berger-Tal et al. 2014). The key to reinforcement
learning algorithms is to obtain this balance, whereas other
machine learning algorithms, such as SVM and LSTM,
do not focus much on this issue (Andrew 1999). In addi-
tion, previous studies of reinforcement learning hedging
strategies have aimed to study a variety of different algo-
rithms, such as Q-learning (Halperin 2020), SARSA (Kolm
and Ritter 2019), deep Q-learning network, and proximal
policy optimization (Du et al. 2020); their objective func-
tion is often a simple yield to maturity, whereas in prac-
tice, investors are not only concerned with yield, but risk,
that is, variance, which should also be considered, and our
model does this.

This study contributes to the literature in several ways.
First, the proposed method is quite simple as an explicit
pricing formula, and the existence of a perfect dynamic
hedging strategy is unnecessary. Second, our objective is
closer to that of the real investment world. We considered
the psychological changes of investors in the investment
process; that is, we controlled for the Sharpe ratio of each
period. We also considered cases in which investors can
focus only on the Sharpe ratio at maturity or give it more
weight. Furthermore, other performance measures, such as
the Sortino ratio, which is a risk-adjustment metric used to
determine the additional return for each unit of downside
risk (Sharpe 1966), instead of the Sharpe ratio, are also
applicable in this model.

The structure of the paper is as follows:
In Sect. 2, we review the literature on asset hedging

strategies.
In Sect. 3, we introduce structured products and Phoenix

options and their features in detail.
In Sect. 4, we introduce the basics of reinforcement.
In Sect. 5, we train the agent via a simulation and prove

that the hedging strategy based on RL is better.
In Sect. 6, we make some extensions and discussions

about our method.

2 � Literature review

In this section, we highlight the main research streams on
hedging strategies in the literature.

In the Black–Scholes model, it is important to solve
partial differential equations (PDEs). Several methods
have been proposed to solve these problems. Barucci

Structured products dynamic hedging based on reinforcement learning﻿	

1 3

et al. (1996) used the Glaerkin method and ANNs to
solve the Black–Scholes PDE. Chan-Wai-Nam, Mikael,
and Warin used ML to solve semilinear PDEs. Joo and
Moon (2021) proposed a quantum variational PDE solver
with the aid of machine-learning schemes to synergize
two emerging technologies in mathematically difficult
problems. Based on the Black Scholes model, researchers
have extended this model by relaxing some unrealistic
assumptions to explain the implied volatility smile as
well as the skewness and kurtosis in the return distribu-
tion. The first is the model of the jump-diffusion pro-
cess proposed by Merton (1976). The second is the sto-
chastic volatility model (Hull and White 1987). The last
model is the local volatility model, developed by Dupire
(1994). Although these models are closer to reality than
the Black–Scholes model, they still have limitations. In
addition to being difficult to compute for complex finan-
cial products, they are not very effective for short-term
pricing (Bakshi et al. 1997).

Another study on hedging strategies mainly used
machine-learning methods. Gammerman and Vovk (2007)
used ML algorithms such as support vector machines
(SVM), kernel ridge regression (KRR), and kernel near-
est neighbors (KNN) to hedge the predictions. Das and
Padhy (2017) proposed a hybrid model that combines the
Black–Scholes option pricing model, Monte Carlo option
pricing model, and the finite difference method with
support vector regression (SVR) and extreme learning
machine-based regression models. Shin and Ryu (2012)
presented a methodology for a dynamic option-hedging
strategy using ANN to enhance hedging performance.
Reinforcement learning has unique significance in the
study of hedging strategies because of its unique charac-
teristics. The first person to use reinforcement learning
for hedging was Halperin (2020), who minimized the ter-
minal variance of the hedge portfolio based on Markow-
itz portfolio theory to obtain the optimal solution. Kolm
and Ritter (2019) built a system that can automatically
learn how to optimally hedge an option in a fully real-
istic setting using RL. Other studies that used reinforce-
ment learning to study hedging strategies include Buehler
et al. (2019a, b), Du et al. (2020), and Gu (2022). They
have made many extensions to the model to make it more
optimal, but their reward function is not free from the
Black–Scholes model and does not consider the realistic
reward function that investors need.

The proposed model in this study is closer to the real
investment world. We also considered the psychological
changes of investors in the investment process; that is, we
controlled for the Sharpe ratio of each period. We also con-
sider cases in which investors can focus only on the Sharpe
ratio at maturity or give it more weight.

3 � Structured products

Structured products can be understood as financial prod-
ucts tailored to clients. Officially, structured products
are financial instruments whose performance or value is
related to that of the underlying asset, product, or index.
These are pre-packaged and non-traditional products that
are used as alternatives to direct investment. A structured
product can be seen as a product package using three main
components: bonds, one or more underlying assets, and
derivative strategy. Thus, structured products are essen-
tially combinations of multiple financial derivatives.

Some simple structured products include market indi-
ces, and most structured products are more complex, such
as the Phoenix option used in this study.

Structured products are now well established in most
countries throughout Europe and are provided by major
banks, insurance groups, and various other organizations.

Based on the BSM model, publishers can offer various
structured products without taking market risks. We used
a relatively complex structured product in this study as an
example to illustrate the power of reinforcement learning.
Specifically, we study the dynamic hedging strategy for
a structured product called the Phoenix option, which is
an autocallable note, whose features are described below.

3.1 � Phoenix option features

First, we introduce the important time points for the Phoe-
nix options. Phoenix options set interesting observation
dates, usually once a month, and the closing price of this
day determines your contingent interest payment. In addi-
tion to the observation date of interest, there is an auto call
observation date, usually once a season, the closing price
of which day will determine whether the product would be
automatically called; maturity is uncertain because Phoe-
nix options may be automatically called.

We then present the payments regarding the above
important time points: contingent interest payment, auto-
matically callable, and contingent repayment of the prin-
cipal amount at maturity.

(1) Contingent interest payment.
In every interest observation date, if the closing price of

the underlying equity is equal to or greater than a certain
price, called the interest barrier, the investor will receive a
contingent interest payment, which is a certain proportion
of the principal in the auto-call observation dates.

(2) Automatically callable.
On every auto call observation date, the notes will be

automatically called if the closing price of the underlying
equity is less than the interest barrier or greater than a

	 H. Xu et al.

1 3

certain price called the trigger price. When the notes are
automatically called, the investor receives a contingent
repayment like the contingent repayment of the principal
amount at maturity in (3). In most cases, the trigger price
is equal to the interest barrier.

(3) Contingent repayment of principal amount at
maturity.

The investor obtains the principal back if the notes have
not been called and the final price is greater than the trig-
ger price by maturity. Otherwise, if the final price is less
than the trigger price, the investor will take the loss him-
self; that is, he will only get the cash equivalent whose
value is less than the principal in this case.

3.2 � Examples

This section we give an example to better understand
Phoenix option.

For convenience, we do not consider the risk-free inter-
est rate.

First, we summarize some important parameters used
in the examples (see Table 1).

(1) The closing price of the underlying equity is equal
to or greater than the initial price on the first auto call
observation date.

Date Closing price Payment
per note

1st interest observation date 52 15
2nd interest observation date 35 0
3rd interest observation date and 1st

autocall observation date
51 1015

Total payment: 1030

(2) Notes are not called and the final price is greater
than the trigger price.

Date Closing price Payment
per note

1st interest observation date 41 15
2nd interest observation date 30 0
3rd interest observation date and 1st

autocall observation date
42 15

4th to 11th interest observation date (40, 50) 120
Valuation date (the final date) 45 1015
Total payment: 1165

(3) Notes are not called and the final price is less than the
trigger price.

Date Closing price Payment per note

1st interest observation date 41 15
2nd interest observation date 30 0
3rd interest observation date

and 1st autocall observation
date

42 15

4th to 11th interest observation
date

(40, 50) 120

Valuation date (the final date) 30 30 × 20 shares = 600
Total payment: 750

4 � Reinforcement learning

Reinforcement learning (RL) is a type of machine learning
algorithm which can be seen as a third machine learning
paradigm along with side-supervised learning and unsu-
pervised learning. In other words, RL learns the mapping
from state to action. For example, given the current position,
underlying asset price, and some necessary known informa-
tion, this mapping can be used to take optimal action, that
is, the hedging strategy. Mathematically, RL is formalized
using ideas from dynamical systems theory, specifically as
the optimal control of an incompletely known Markov deci-
sion process (MDP).

The main concepts of RL can be summarized as explora-
tion and exploitation. Exploration means that the RL method
tries different actions which have not been tried before by
the RL method to obtain better actions, whereas exploitation
means that the RL method prefers actions that can offer more
expected rewards. In RL, researchers often use the epsilon-
greedy algorithm to balance exploration and exploitation,
which we introduce in the next section.

Recently, an increasing number of studies have begun
to focus on the application of reinforcement learning in
option hedging (Du et al. 2020; Kolm and Ritter 2019; Cao
et al. 2021; Vittori et al. 2020), optimal execution (Nev-
myvaka et al. 2006), portfolio optimization (Almahdi and

Table 1   Parameters of Phoenix options

Principal amount 1000 dollars
Term 12 months
Initial price 50 dollars
Contingent interest payment 15 dollars
Interest observation dates Monthly
Auto call observation dates Seasonally
Interest barrier 40 dollars (80%)
Trigger price 40 dollars (80%)
Averaging dates N/A

Structured products dynamic hedging based on reinforcement learning﻿	

1 3

Yang 2017; Yu et al. 2019), and market making (Spooner
et al. 2018; Lim and Gorse 2018; Ganesh et al. 2019) etc.

Some important elements in RL are shown as follows:
(1) Random variables
A random variable is a variable whose value is unknown

or is a function that assigns values to each of the experi-
mental outcomes. In RL, St and At are random variables.

(2) Stochastic process
A stochastic process is a collection of random variables

indexed by a mathematical set.
(3) Markov chain/process
A Markov chain process is a stochastic process with

Markov properties. In discrete-time cases, the Markov
property can be formulated as follows:

where {Xn} is a stochastic process.
The intuition for this definition is that the evolution of

the Markov process in the future depends only on the pre-
sent state and not on history. Thus, the Markov process is
also called a process with memoryless properties.

(4) Markov decision process
A Markov decision process (MDP) is a process with

reward and action functions. In RL, we train an agent by
simulating agent-environment interactions. The agent is
the learner or the decision maker, who selects actions at
every step, and the environment responds to these actions
with rewards and presets new states to the agent. These
interactions are shown in Fig. 1.

RL’s job is to obtain policy π, which is, in essence, a
mapping from states to actions. For example, maintain-
ing the hedging position at a constant 0 is a policy. The
optimal policy π* satisfies the assumption that the agent
can maximize the expectation of Gt based on this policy.

where γ is the discount factor, γ ∈ [0,1], and Rt is the reward
after every step. Note that the limit that γ < 1 is not a neces-
sity in recent studies, which we discuss later.

P(Xn = xn|Xn−1 = xn−1,…X0 = x0) = P(Xn = xn|Xn−1 = xn−1),

Gt = Rt+1 + �Rt+2 + �
2Rt+3 +⋯ =

∞∑

i=1

�
i−1Rt+i,

There are two important value functions in RL: state-
value and action-value.

The state-value and action-value functions are defined
as follows:

where St represents the state at time t and At represents the
action at time t according to policy π.

We find that v is the weighted average of q; that is,

and

where the transition probability is p(s′, r| s, a), which means
that in state s, the agent takes action a, the probability of
obtaining a reward r, and the state transition to s′ is p(s′, r|
s, a).

Using these two equations, we can obtain two important
recursion formulas known as the Bellman equation.

We can then obtain the optimal state-value and action-
value functions as follows:

where v* and q* represent the optimal state-value and action-
value functions, respectively, and π* is the optimal policy.

RL has different algorithms, such as Q-learning, SARSA,
deep Q Network (DQN). Q-learning aims to maximize the Q
function in the Bellman equation, and DQN is an improved
version of Q-learning, mainly to enhance generality by intro-
ducing neural networks. This study used the SARSA algo-
rithm, which we recalled.

SARSA is temporal-difference (TD) learning, which is a
combination of Monte Carlo (MC) and dynamic program-
ming (DP) ideas. First, let us recall DP and MC.

In RL, DP algorithms are obtained by turning Bell-
man equations into assignments, that is, updating rules by
improving approximations of the desired value functions.
Briefly, we can construct a fixed-point equation as follows:

v�(s) ∶= E�[Gt|St = s]

q�(s, a) ∶= E�[Gt|St = s,At = a]

v�(s) =
∑

a

�(a|s)q�(s, a)

q�(s, a) =
∑

r,s�

p(s�, r|s, a)(r + �v�(s
�))

v�(s) =
∑

a

�(a|s)
∑

s�,r

p(s�, r|s, a)[r + �v�(s
�)]

q�(s, a) =
∑

s�,r

p(s�, r|s, a)
[
r + �

∑

a�

�(a�|s�)q�(s�, a�)
]
.

v∗(s) = v�∗ (s) = max
a

∑

s�,r

p(s�, r|s, a)[r + �v∗(s�)]

q∗(s, a) = q�∗ (s, a) =
∑

s�,r

p(s�, r|s, a)
[
r + � max

a�
q∗(s�, a�)

]
,

Fig. 1   The agent-environment interaction

	 H. Xu et al.

1 3

where Vk is a column vector (Vk(S1), Vk(S2)….Vk(Sn))T
MC methods are ways of solving RL problems based on

average sample returns. They approximated Gt by sampling,
as follows:

TD methods combine the benefits of DP (bootstrapping)
and MC (sampling); that is, TD methods can learn directly
from raw experience and update the policy after each step
without waiting until the end of each episode. The policy
updates of TD methods can be summarized as follows:

SARSA and Q-learning are the two main TD algorithms.
The policy update is as follows.

The update is performed after every transition
from a nonterminal state. SARSA uses a quintet tuple:
(St,At,Rt + 1,St + 1,At + 1). This was the origin of the name.

In this study, we use the SARSA algorithm to train the
agent, as SARSA learns the Q-value based on the action per-
formed by the current policy instead of the greedy policy,
which means that the SARSA algorithm can find the opti-
mal hedging strategy faster. Although the characteristics of
SARSA would make it impossible to find a truly optimal
solution, we chose SARSA over Q-learning because the
structured products in our portfolio are quite complex and
no optimal hedging strategy necessarily exists in our assump-
tions. The other methods are discussed in Sect. 6.3.

5 � Training via simulation

In this section, we introduce our method based on an envi-
ronmental simulation. Before introducing important settings,
we provide an overall training framework. First, we assume
that the agent holds one share option and can but never trade
it, which means that the position of option in the portfolio is
always constant at 1. At every interest observation date and
at time 0, the agent will decide to buy or sell a certain num-
ber of underlying equity depending on the current state and
Q-table. The Q-table can be understood figuratively as an

vk+1 =
∑

a

�(a|s)
∑

s�,r

p(s�, r|s, a)(r + �vk),

v�(s) = E�[Gt|St = s]

v(St) ← v(St) + �(Gt − v(St)).

v�(s) = E�[Rt+1 + �v�(st+1)|st = s]

v(st) ← v(st) + �[Rt+1 + �v(st+1) − v(st)].

SARSA ∶

q(st, at) ← q(st, at) + �[rt+1 + �q(st+1, at+1) − q(st, at)]

Q − Learning ∶

q(st, at) ← q(st, at) + �[rt+1 + � max
a

q(st+1, a) − q(st, at)]

agent’s action guide, which is essentially a discrete function;
that is, given a state (St, τ, pos), we can search the Q-table
for an optimal action.

We performed this training by simulating episodes. In
each simulation, the price of the underlying asset was gen-
erated randomly. Some of the necessary parameters are
predetermined, whereas the paths are not. The details are
presented in Sect. 2.1.

In the training, the current state and Q-Table are all the
agents know, while in practice, they may know more than
that, a certain structured product’s rules, for example. While
we can add more information in the state space to make the
agent aware of this, it is unnecessary because an increase
in the number of variables in the state space will lead to an
extreme increase in the number of episodes; that is, we may
need more episodes to converge. Therefore, we do not bother
to do so, and only some confidential variables in the state
space are sufficient.

Moreover short selling is allowed in our case, and inves-
tors can lend or borrow at a risk-free interest rate.

5.1 � Set up

First, we assume that the underlying equity obeys the geo-
metric Brownian motion (GBM); that is, the price of the
underlying equity is a stochastic process St, satisfying the
following stochastic differential equation (SDE):

where Wt is Brownian motion, and r and σ are constants
that represent the risk-free interest rate and volatility,
respectively.

Solving the SDE, we can obtain the analytic solution:

where S0 is the initial price of the underlying equity.

dSt = rStdt + �StdWt,

ln St − ln S0 =
(
r −

1

2
�
2
)
t + �Wt,

Table 2   Some important parameters of Phoenix options in training

Principal amount 100 dollars
Term (T) 12 months
Initial price (S0) 100 dollars
Contingent interest payment (CPMT) 5 dollars
Interest observation dates monthly
Auto call observation dates seasonally
Interest barrier 80 dollars (80%)
Trigger price 80 dollars (80%)
Averaging dates N/A
Risk-free interest rate (r) 3%
Volatility of underlying equity 15%

Structured products dynamic hedging based on reinforcement learning﻿	

1 3

Then we set some important parameters of Phoenix
options (see Table 2).

It is necessary to point out that the absolute value of these
parameters or results are meaningless, unlike the relative
values. For example, in the following section, we calculate
the Sharpe ratio of the raw portfolio as 1.87. In practice, if
an asset’s Sharpe ratio is greater than 1, it is worth investing
in. However, what matters is the comparison between the
Sharpe ratio and 1.87 after adopting the hedging strategy.

Next, we set up the action function At, which is our pol-
icy. In general, At is determined by the policy function. One
of the challenges that arise in RL, and not in other types of
learning, is the trade-off between exploration and exploita-
tion, as mentioned before. To strike a balance between them
and fully utilize them, a greedy policy called ε-greedy policy
is defined as follows:

where u is a random number generated before choosing
which action to take, and random(a) indicates that if u < ε,
this policy will choose a random action from the action
space. In our training, ε was an iteration-dependent variable
instead of a constant. As the training progressed, ε continued
to decay. First, we set a relatively high ε of 0.5 for exam-
ple, and the final ε was 0.01. Assuming the number of epi-
sodes is 10k, then at the ith episode, εt is 0.5 − 0.000049
(i − 1). Through this setting, the model will explore the state
space thoroughly at the beginning of training, and then with
ε becoming increasingly smaller, the model exploits the
Q-Table more.

In our method, we used the Sharpe ratio of the portfolio
to define the reward. First, we consider the Sharpe ratio. The
Sharpe ratio is a measure of risk-adjusted return, named after
William F. Sharpe (1966). It is one of the most used invest-
ment return indices in finance. It is defined as the difference
between the expected return on the asset and the risk-free
return divided by the standard deviation of the asset return:

where E[R-Rf] represents the difference between asset
returns and the risk-free return and Std[R] is the standard
deviation of the asset return.

Subsequently, we trained the agent to hedge at every
interest observation date (monthly, in this case). In practice,
investors are not only concerned about the return at the time
of maturity, but are also relatively sensitive to the return and
risk in the holding period. Some indices, such as maximum
pullback and maximum-pullback days, may also constitute
the desired reward function in other cases. However, in this

𝜋𝜀−greedy(s) =

{
random(a) u < 𝜀

argmax q(s, a)
a

u ≥ 𝜀 ,

Sharpe_Ratio =
E[R − Rf]

Stddev[R]
,

case, as we can obtain a reward at every step, we can use the
Sharpe ratio to control the return and risk of each period.
Besides the risk and return at maturity is still pivotal; so,
we can use the weight related to the due time to express
varying importance. Different settings of weight are also
important in the training, and many studies have focused on
such parameters, which will be discussed later.

The agent hedges the option on every interest observation
date, and we use a function of distance to maturity and the
Sharpe ratio of the asset portfolio from t = 0 to the current
period to define the reward function, that is,

The state function matters because the size of the state
space directly determines the convergence speed, and the
state must include all information known to the agents.
Therefore, according to Kolm and Ritter (2019), the state of
every step is a triplet:

where St is the underlying equity price at time t; τ is the
distance to maturity T-t; and pos is the underlying equity
position at time t. In the real world, as previously discussed,
the agent knows more than the current state function. How-
ever, this triplet is sufficient for the agent to make decisions,
owing to the power of reinforcement learning.

Finally, we define the value of portfolio Xt as follows:

where OPTt is the price of the Phoenix option at time t, given
the underlying equity price St + 1, which is calculated using
Monte Carlo Simulation, and cpmt is the contingent interest
payment on every interest observation date. This formula is
an intuition from that at time t, the investor takes action at,
his position becomes post, his cash is (Xt − post*St-OPTt),
and at time t + 1, he may get or pay the interest.

5.2 � Dynamic hedging strategy

As previously mentioned, in our training, the underlying
asset price is totally stochastic, and in practice, it is gener-
ated at every step rather than predetermined. Our method is
to obtain a strategy called the Q-Table.

First, we calculate the Sharpe ratio at maturity without
taking hedging action (see Fig. 2). We simulate 10k times
and use the average Sharpe ratio as the benchmark.

We conducted 10k simulations and the average Sharpe
ratio is 1.87.

� = T − t

Rt+1 = sharpe_ratio({Xi}
t
i=0

) ×
12 − �

12 × (� + 1)
.

(St, �, pos),

Xt+1 = post × St+1 + OPTt+1 + cpmt + e
r

T (Xt − post × St − OPTt)

post+1 = post + at+1,

	 H. Xu et al.

1 3

We then trained the agent using 100k episodes. In other
words, we simulated 100k underlying equity price paths.
In fact, this quantity is far from sufficient. Although we
maintain one decimal place when we calculate St and pos,,
the number of state spaces of St and pos can be over 500
and 2000, respectively, given that St ranges from 75 to 125
and pos ranges from − 100 to 100. Therefore, there can
be more than 1 m different states without considering the
due time. It is necessary to mention that if one state never
appears in the Q-Table before, the hedging strategy is zero,
that is, it takes no action. The results are shown in Fig. 3.
The result is bound to show a certain randomness, but it
is also apparent that there is an upward trend because our
simulation is “on-policy” too, which means every episode

almost surely generates a totally different path. The per-
formance was below the benchmark until 75k episodes.

6 � Extensions and discussion

Our method can also be modified according to different pref-
erences. In this section, we introduce two cases. First, we
consider different time weights; that is, some investors may
only focus on performance at maturity, so we can assign
more weight to the reward at maturity. Second, we consider
other performance indices, such as the Sortino ratio, rather
than the Sharpe ratio. In practice, investors can define vari-
ous reward functions to satisfy different needs.

6.1 � Time weight

In 2.1, we define reward function as follows:

In practice, investors have different preferences. One may
only focus on the Sharpe ratio at maturity, and assign more
weight to the reward at maturity. Thus, we can use the fol-
lowing definitions.

� = T − t

Rt+1 = sharpe_ratio({Xi}
t
i=0

) ×
12 − �

12 × (� + 1)
.

(1)
� = T − t

Rt+1 = sharpe_ratio({Xi}
t
i=0

) ×
12 − �

12 × (5� + 1)

Fig. 2   The Sharpe ratio at maturity without taking any hedging action

Fig. 3   The Sharpe ratio at maturity taking reinforcement learning
hedging action Fig. 4   Performance using reward function in Eq. 1

Structured products dynamic hedging based on reinforcement learning﻿	

1 3

� 12 11 10 9 8 7 6 5 4 3 2 1 0

12−�

12×(�+1)
0 0.007 0.152 0.025 0.037 0.052 0.071 0.097 0.133 0.188 0.278 0.458 1

12−�

12×(5�+1)
0 0.001 0.003 0.005 0.008 0.011 0.016 0.022 0.032 0.047 0.076 0.153 1

It is clear that by this definition, our method will focus
more on the Sharpe ratio at maturity.

The result is shown in Fig. 4.
In this training, less than 10k iterations made the Sharpe

ratio at maturity over the benchmark because the weight at
maturity is relatively high.

In other methods, we can set all weights equal to 0 except
the weight at maturity; we cannot do so in RL because of the
essence of RL. However, we can use functions that approach
zero to achieve this goal.

In traditional RL, the discount rate γ is typically set
between 0 and 1. The discount rate determines the present
value of future rewards. If γ = 0, the agent is myopic. In
general, acting to maximize immediate rewards can reduce
access to future rewards, so that the return is reduced. We
cannot guarantee that we can obtain the same reward the
next time we take the same action because the environment
is stochastic. The more we consider the future, the greater
the uncertainty. Therefore, in most cases, γ was set between
0 and 1 to avoid considering the future. In addition, the range
of γ is partly related to mathematical rationality. If a problem
is continuous, γ greater than or equal to 1 may render the
result unable to converge.

Some studies have begun to use γ values greater than 1.
Pitis (2019) provided normative justification for a depar-
ture from the traditional MDP setting that allows for a state-
action dependent discount factor that can be greater than
1. Bao et al. (2008) use an incremental sequence as the
discount factor to tackle the limitations of normal policy-
gradient estimation methods on the imbalance of bias and
variance.

In our method, we use an incremental state-dependent
discount factor to place more weight on the reward at
maturity.

6.2 � Performance measures

Flexible performance measures allow for the training of
agents to better match investor preferences. Specifically, dif-
ferent indices can be used for various purposes. For example,
we can use the Sortino ratio, which is a variation of the
Sharpe ratio, and differentiate harmful volatility from total
overall volatility by using the asset’s standard deviation of
negative portfolio returns.

In addition, different utility functions are used. For exam-
ple, the utility function is used in investment.

where E(rP) is the expected return of the portfolio, and σP is
the standard deviation of the portfolio’s excess return. A is
an index of investor risk aversion. The extent to which vari-
ance lowers utility depends on A. Risk aversion has a major
impact on investors’ appropriate risk-return trade-off. Kolm
and Ritter (2019) used this utility function as the reward
function.

6.3 � Other RL algorithms

As mentioned previously, the state space in our method is
combinatorial, stochastic, and enormous. We cannot expect
to find an optimal policy or optimal value function, even
given infinite time, to explore every state. In fact, as the
number of episodes increases, the time required increases
nonlinearly. For example, in the SARSA method, every step
the agent searches the Q-Table for the optimal action. How-
ever, after many simulations, the Q-Table can become very
large. Therefore, searching for an optimal action can also be
time consuming. Q-learning, another TD control method,
also faces this problem.

A deep Q-Net (DQN) can solve these problems. In this
method, only the network, structure, and parameters of
the deep learning network must be stored. Similar inputs
result in similar outputs, which means a stronger generali-
zation ability. However, the training results may not con-
verge because of the introduction of nonlinear functions to
approximate the Q-Table. In this study, we did not compare
different RL algorithms because the focus was on RL itself
instead of comparing the efficiency of different algorithms.
The introduction here provides a choice when the perfor-
mance of SARSA is not good.

7 � Conclusion

In this article, we propose a simple reinforcement learning
method that can train an agent and obtain a hedging strategy
that can make the agent gain more rewards than the rewards
from the “buy and hold” policy.

Subsequently, an example is provided to demonstrate the
power of RL. We introduced a structural product called the
Phoenix option. By RL, the Sharpe ratio of investors’ port-
folios at maturity is higher than when no hedging strategy
is adopted.

U = E(rP) −
1

2
A�2

P
,

	 H. Xu et al.

1 3

In existing research on reinforcement learning hedging
strategies, the reward function is relatively fixed; for exam-
ple, Kolm and Ritter (2019) introduced the function property
term as a regularizer in the reward function. In fact, in the
real investment world, the utility function is not commonly
used as a criterion to evaluate good or bad investments,
while our work considers this by using the Sharpe ratio as
the reward function, which also allows us to further investi-
gate hedging strategies in real markets in the future.

In our method, an explicit pricing formula is unnecessary;
however, it can improve the running speed of our algorithm
to a certain extent. In addition, we do not need a pre-calcu-
lated perfect dynamic hedging strategy, and its existence
is not a necessity. The strategy for the initial state of the
algorithm is 0. The algorithm does is to solely explore and
exploit. When a perfect dynamic hedging strategy does not
exist, the proposed method can still obtain a better hedging
strategy with training.

Our method can also be modified according to different
preferences. In this study, we considered the psychologi-
cal changes of investors in the investment process, that is,
we controlled for the Sharpe ratio in each period. We also
considered cases in which investors can focus only on the
Sharpe ratio at maturity or give it more weight. Further-
more, other performance measures, such as the Sortino ratio
instead of the Sharpe ratio, are also applicable in this model.

The power of RL is significantly higher than that. Com-
pared with other theories used to make decisions in finance,
such as the stochastic control theory, RL can fully utilize
historical data and even generate more data, and with explo-
ration and exploitation, there can be fewer assumptions and
better performance.

Our approach also has some drawbacks in that we do not
use real market data because of product complexity. Based
on our work, more research can be conducted. In addition
to the expansions mentioned in Sect. 5, that is, different
weights, performance measures, and RL algorithms, we can
use historical data to generate the training and test sets in
the presence of transaction costs. Another possible research
direction would be to use parallel algorithms to increase
training speed.

References

Almahdi S, Yang SY (2017) An adaptive portfolio trading system: a risk-
return portfolio optimization using recurrent reinforcement learning
with expected maximum drawdown. Expert Syst Appl 87:267–279

Andrew AM (1999) reinforcement learning: an introduction by Richard
S. Sutton and Andrew G. Barto, Adaptive computation and machine
learning series. MIT Press (Bradford Book), Cambridge [1998,
ISBN 0-262-19398-1,(hardback,£ 31.95). Robotica, 17(2), 229–235]

Bakshi G, Cao C, Chen Z (1997) Empirical performance of alternative
option pricing models. J Financ 52(5):2003–2049

Bao BK, Yin BQ, Xi HS (2008) Infinite-horizon policy-gradient estima-
tion with variable discount factor for Markov decision process. In:
2008 3rd international conference on innovative computing informa-
tion and control. IEEE, pp 584–584

Barucci E, Cherubini U, & Landi L (1996) No-arbitrage asset pricing with
neural networks under stochastic volatility. In: Neural networks in
financial engineering: Proceedings of the third international confer-
ence on neural networks in the capital markets. World Scientific,
New York, pp 3–16

Berger-Tal O, Nathan J, Meron E, Saltz D (2014) The exploration-
exploitation dilemma: a multidisciplinary framework. PLoS ONE
9(4):e95693

Buehler H, Gonon L, Teichmann J, Wood B (2019a) Deep hedging. Quant
Finance 19(8):1271–1291

Buehler H, Gonon L, Teichmann J, Wood B, Mohan B, Kochems J
(2019b) Deep hedging: hedging derivatives under generic market
frictions using reinforcement learning. Swiss Finance Institute
Research Paper (19–80)

Caldentey R, Haugh M (2006) Optimal control and hedging of operations
in the presence of financial markets. Math Oper Res 31(2):285–304

Cao J, Chen J, Hull J, Poulos Z (2021) Deep hedging of derivatives using
reinforcement learning. J Financ Data Sci 3(1):10–27

Das SP, Padhy S (2017) A new hybrid parametric and machine learning
model with homogeneity hint for European-style index option pric-
ing. Neural Comput Appl 28(12):4061–4077

Du J, Jin M, Kolm PN, Ritter G, Wang Y, Zhang B (2020) Deep reinforce-
ment learning for option replication and hedging. J Financ Data Sci
2(4):44–57

Dupire B (1994) Pricing with a smile. Risk 7(1):18–20
Fliess M, Join C (2010) Delta hedging in financial engineering: towards

a model-free setting. In: 18th Mediterranean conference on control
and automation, Marrakech

Gammerman A, Vovk V (2007) Hedging predictions in machine learning.
Comput J 50(2):151–163

Ganesh S, Vadori N, Xu M, Zheng H, Reddy P, Veloso M (2019) Rein-
forcement learning for market making in a multi-agent dealer mar-
ket. arXiv preprint arXiv:​1911.​05892

Gu S (2022) Deep reinforcement learning with function properties in
mean reversion strategies. J Financ Data Sci 4(4):54–65

Halperin I (2020) Qlbs: Q-learner in the black-scholes (-merton) worlds.
J Deriv 28(1):99–122

Hull J, White A (1987) The pricing of options on assets with stochastic
volatilities. J Financ 42(2):281–300

Joo J, Moon H (2021) Quantum variational PDE solver with machine
learning. arXiv preprint arXiv:​2109.​09216

Kolm PN, Ritter G (2019) Dynamic replication and hedging: a reinforce-
ment learning approach [J]. J Financ Data Sci 1(1):159–171

Lim YS, Gorse D (2018) Reinforcement learning for high-frequency
market making. In: ESANN 2018-Proceedings, European sympo-
sium on artificial neural networks, computational intelligence and
machine learning. ESANN, pp 521–526

Merton RC (1976) Option pricing when underlying stock returns are dis-
continuous. J Financ Econ 3(1–2):125–144

Nevmyvaka Y, Feng Y, Kearns M (2006) Reinforcement learning for
optimized trade execution. In: Proceedings of the 23rd international
conference on machine learning, pp 673–680

Pitis S (2019) Rethinking the discount factor in reinforcement learning:
a decision theoretic approach. In: Proceedings of the AAAI confer-
ence on artificial intelligence, vol 33(01), pp 7949–7956

Sharpe WF (1966) Mutual fund performance. J Bus 39(1):119–138
Shin HJ, Ryu J (2012) A dynamic hedging strategy for option transaction

using artificial neural networks. Int J Softw Eng Appl 6(4):111–116
Spooner T, Fearnley J, Savani R, Koukorinis A (2018) Market making via

reinforcement learning. arXiv preprint arXiv:​1804.​04216

http://arxiv.org/abs/1911.05892
http://arxiv.org/abs/2109.09216
http://arxiv.org/abs/1804.04216

Structured products dynamic hedging based on reinforcement learning﻿	

1 3

Taleb NN (1997) Dynamic hedging: managing vanilla and exotic options,
vol 64. Wiley, New York

Vittori E, Trapletti M, Restelli M (2020) Option hedging with risk averse
reinforcement learning. In: Proceedings of the first ACM interna-
tional conference on AI in finance, pp 1–8

Yu P, Lee JS, Kulyatin I, Shi Z, Dasgupta S (2019) Model-based deep
reinforcement learning for dynamic portfolio optimization. arXiv
preprint arXiv:​1901.​08740

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/1901.08740

	Structured products dynamic hedging based on reinforcement learning
	Abstract
	1 Introduction
	2 Literature review
	3 Structured products
	3.1 Phoenix option features
	3.2 Examples

	4 Reinforcement learning
	5 Training via simulation
	5.1 Set up
	5.2 Dynamic hedging strategy

	6 Extensions and discussion
	6.1 Time weight
	6.2 Performance measures
	6.3 Other RL algorithms

	7 Conclusion
	References

