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Abstract
In the Black–Scholes model proposed in 1973, an investor can use a continuously rebalanced dynamic strategy to hedge the 
risk of a certain option, assuming that the underlying asset’s price is subject to geometric Brownian motion (a continuous-
time stochastic process where the logarithm of the variable follows a Brownian motion) and the market is complete and 
frictionless, which is unrealistic due to the continuous changes in asset prices. The application of reinforcement learning (RL) 
in finance includes a variety of decision-making problems such as hedging, optimal execution, and portfolio optimization. 
RL can make full use of historical data or generate more data than other theories used to make decisions in finance such 
as stochastic control theory. There will be fewer assumptions and better performance with exploration and exploitation. In 
this article, we propose a reinforcement learning-based model that can help investors dynamically hedge financial products 
in discrete time using complex structured products: the Phoenix option (a note that only pays a coupon if the price of the 
underlying asset is above a certain barrier and redeems if the price breaches an autocall barrier) as an example in this paper. 
This model is highly expandable and can set an objective function according to the investor’s preferences; for example, the 
Sharpe ratio (a measure of risk-adjusted return that compares the return of an investment with its risk) is very lightweight 
because we do not assume the existence of an optimal hedging strategy.

Keywords  Structure products · Dynamic hedging · Reinforcement learning

1  Introduction

In the Black–Scholes model proposed in 1973, an investor 
can use a continuously rebalanced dynamic strategy to hedge 
the risk of a certain option. The aim of this dynamic hedging 
method is to construct a risk-neutral portfolio with respect 
to a certain parameter in this model, that is, the Greeks. 
However, in practice, these parameters change continuously 
because the price of the underlying asset changes continu-
ously. This continuous hedging strategy is unrealistic in the 
case of transaction costs. Therefore, the adjustment time for 
the position is discrete. Research on this hedging strategy 
depends on the expansion of the Black–Scholes model and 
relaxation constraints (Taleb 1997; Caldentey and Haugh 
2006; Fliess and Join 2010).

Machine learning (ML) is part of artificial intelligence, 
and is designed to make predictions or decisions. Recently, 
ML has been increasingly applied to finance. Although 
many studies have used ML methods, the specific algo-
rithms and purposes vary greatly. Some models use ML 
to solve the mathematical problems in the Black–Scholes 
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model, while others break the Black–Scholes model frame-
work and directly use ML to establish a new framework to 
analyze the hedge strategy.

In the Black–Scholes model, it is important to solve 
partial differential equations (PDEs). Several methods 
have been proposed to solve these problems. Barucci et al. 
(1996) used the Glaerkin method and ANNs to solve the 
Black–Scholes PDE. Chan-Wai-Nam, Mikael, and Warin 
used ML to solve semilinear PDEs. Joo and Moon (2021) 
proposed a quantum variational PDE solver with the aid 
of machine-learning schemes to synergize two emerging 
technologies in mathematically hard problems.

Some models are not completely dependent on the 
Black–Scholes model. Gammerman and Vovk(2007) used 
ML algorithms such as support vector machines (SVM), 
kernel ridge regression (KRR), and kernel nearest neigh-
bors (KNN) to hedge the predictions. Das and Padhy (2017) 
proposed a hybrid model that combines the Black–Scholes 
option pricing model, Monte Carlo option pricing model, 
and the finite difference method with support vector regres-
sion (SVR) and extreme learning machine-based regression 
models. Shin and Ryu (2012) presented a methodology for a 
dynamic option-hedging strategy using an ANN to enhance 
hedging performance.

Recently, the development of reinforcement learning 
(RL) has introduced new methods for pricing and hedging. 
The first person to use reinforcement learning for hedg-
ing was Halperin (2020), who minimized the terminal 
variance of the hedge portfolio based on the Markowitz 
portfolio theory to obtain the optimal solution. Kolm and 
Ritter (2019) built a system that can automatically learn 
how to optimally hedge an option in a fully realistic setting 
using RL. Buehler et al. (2019a, b) used deep reinforce-
ment machine-learning methods to establish frameworks 
for portfolio hedging.

Research on hedging strategies is accompanied by a 
relaxation of constraints to be closer to the real world.
The power of RL enables us to train an agent to auto-
matically obtain an optimal hedging strategy, even in a 
complex environment. In this article, we propose a simple 
reinforcement learning method that can train an agent and 
obtain a hedging strategy that can facilitate them get-
ting more rewards than the rewards from the “buy and 
hold” policy. Rewards can be customized according to 
varied preferences, like the structured product itself. 
Specifically, the reward function of agents trained in this 
study is the Sharpe ratio, which is one of the most used 
investment return indices in finance. The definition is the 
difference between the expected return on the asset and 
risk-free return divided by the standard deviation of the 
asset return.

Compared to traditional methods, our approach is closer 
to market reality as an explicit pricing formula, and the 

existence of a perfect dynamic hedging strategy is unneces-
sary. Hedging is essentially an interaction with the environ-
ment, and the interaction involves acquiring new knowl-
edge and using the knowledge to improve performance. 
The trade-off between the two is one of the most fundamen-
tal trade-offs in nature, and optimal performance usually 
requires a balance between exploratory and exploitative 
behavior (Berger-Tal et al. 2014). The key to reinforcement 
learning algorithms is to obtain this balance, whereas other 
machine learning algorithms, such as SVM and LSTM, 
do not focus much on this issue (Andrew 1999). In addi-
tion, previous studies of reinforcement learning hedging 
strategies have aimed to study a variety of different algo-
rithms, such as Q-learning (Halperin 2020), SARSA (Kolm 
and Ritter 2019), deep Q-learning network, and proximal 
policy optimization (Du et al. 2020); their objective func-
tion is often a simple yield to maturity, whereas in prac-
tice, investors are not only concerned with yield, but risk, 
that is, variance, which should also be considered, and our 
model does this.

This study contributes to the literature in several ways. 
First, the proposed method is quite simple as an explicit 
pricing formula, and the existence of a perfect dynamic 
hedging strategy is unnecessary. Second, our objective is 
closer to that of the real investment world. We considered 
the psychological changes of investors in the investment 
process; that is, we controlled for the Sharpe ratio of each 
period. We also considered cases in which investors can 
focus only on the Sharpe ratio at maturity or give it more 
weight. Furthermore, other performance measures, such as 
the Sortino ratio, which is a risk-adjustment metric used to 
determine the additional return for each unit of downside 
risk (Sharpe 1966), instead of the Sharpe ratio, are also 
applicable in this model.

The structure of the paper is as follows:
In Sect. 2, we review the literature on asset hedging 

strategies.
In Sect. 3, we introduce structured products and Phoenix 

options and their features in detail.
In Sect. 4, we introduce the basics of reinforcement.
In Sect. 5, we train the agent via a simulation and prove 

that the hedging strategy based on RL is better.
In Sect. 6, we make some extensions and discussions 

about our method.

2 � Literature review

In this section, we highlight the main research streams on 
hedging strategies in the literature.

In the Black–Scholes model, it is important to solve 
partial differential equations (PDEs). Several methods 
have been proposed to solve these problems. Barucci 
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et  al. (1996) used the Glaerkin method and ANNs to 
solve the Black–Scholes PDE. Chan-Wai-Nam, Mikael, 
and Warin used ML to solve semilinear PDEs. Joo and 
Moon (2021) proposed a quantum variational PDE solver 
with the aid of machine-learning schemes to synergize 
two emerging technologies in mathematically difficult 
problems. Based on the Black Scholes model, researchers 
have extended this model by relaxing some unrealistic 
assumptions to explain the implied volatility smile as 
well as the skewness and kurtosis in the return distribu-
tion. The first is the model of the jump-diffusion pro-
cess proposed by Merton (1976). The second is the sto-
chastic volatility model (Hull and White 1987). The last 
model is the local volatility model, developed by Dupire 
(1994). Although these models are closer to reality than 
the Black–Scholes model, they still have limitations. In 
addition to being difficult to compute for complex finan-
cial products, they are not very effective for short-term 
pricing (Bakshi et al. 1997).

Another study on hedging strategies mainly used 
machine-learning methods. Gammerman and Vovk (2007) 
used ML algorithms such as support vector machines 
(SVM), kernel ridge regression (KRR), and kernel near-
est neighbors (KNN) to hedge the predictions. Das and 
Padhy (2017) proposed a hybrid model that combines the 
Black–Scholes option pricing model, Monte Carlo option 
pricing model, and the finite difference method with 
support vector regression (SVR) and extreme learning 
machine-based regression models. Shin and Ryu (2012) 
presented a methodology for a dynamic option-hedging 
strategy using ANN to enhance hedging performance. 
Reinforcement learning has unique significance in the 
study of hedging strategies because of its unique charac-
teristics. The first person to use reinforcement learning 
for hedging was Halperin (2020), who minimized the ter-
minal variance of the hedge portfolio based on Markow-
itz portfolio theory to obtain the optimal solution. Kolm 
and Ritter (2019) built a system that can automatically 
learn how to optimally hedge an option in a fully real-
istic setting using RL. Other studies that used reinforce-
ment learning to study hedging strategies include Buehler 
et al. (2019a, b), Du et al. (2020), and Gu (2022). They 
have made many extensions to the model to make it more 
optimal, but their reward function is not free from the 
Black–Scholes model and does not consider the realistic 
reward function that investors need.

The proposed model in this study is closer to the real 
investment world. We also considered the psychological 
changes of investors in the investment process; that is, we 
controlled for the Sharpe ratio of each period. We also con-
sider cases in which investors can focus only on the Sharpe 
ratio at maturity or give it more weight.

3 � Structured products

Structured products can be understood as financial prod-
ucts tailored to clients. Officially, structured products 
are financial instruments whose performance or value is 
related to that of the underlying asset, product, or index. 
These are pre-packaged and non-traditional products that 
are used as alternatives to direct investment. A structured 
product can be seen as a product package using three main 
components: bonds, one or more underlying assets, and 
derivative strategy. Thus, structured products are essen-
tially combinations of multiple financial derivatives.

Some simple structured products include market indi-
ces, and most structured products are more complex, such 
as the Phoenix option used in this study.

Structured products are now well established in most 
countries throughout Europe and are provided by major 
banks, insurance groups, and various other organizations.

Based on the BSM model, publishers can offer various 
structured products without taking market risks. We used 
a relatively complex structured product in this study as an 
example to illustrate the power of reinforcement learning. 
Specifically, we study the dynamic hedging strategy for 
a structured product called the Phoenix option, which is 
an autocallable note, whose features are described below.

3.1 � Phoenix option features

First, we introduce the important time points for the Phoe-
nix options. Phoenix options set interesting observation 
dates, usually once a month, and the closing price of this 
day determines your contingent interest payment. In addi-
tion to the observation date of interest, there is an auto call 
observation date, usually once a season, the closing price 
of which day will determine whether the product would be 
automatically called; maturity is uncertain because Phoe-
nix options may be automatically called.

We then present the payments regarding the above 
important time points: contingent interest payment, auto-
matically callable, and contingent repayment of the prin-
cipal amount at maturity.

(1) Contingent interest payment.
In every interest observation date, if the closing price of 

the underlying equity is equal to or greater than a certain 
price, called the interest barrier, the investor will receive a 
contingent interest payment, which is a certain proportion 
of the principal in the auto-call observation dates.

(2) Automatically callable.
On every auto call observation date, the notes will be 

automatically called if the closing price of the underlying 
equity is less than the interest barrier or greater than a 
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certain price called the trigger price. When the notes are 
automatically called, the investor receives a contingent 
repayment like the contingent repayment of the principal 
amount at maturity in (3). In most cases, the trigger price 
is equal to the interest barrier.

(3) Contingent repayment of principal amount at 
maturity.

The investor obtains the principal back if the notes have 
not been called and the final price is greater than the trig-
ger price by maturity. Otherwise, if the final price is less 
than the trigger price, the investor will take the loss him-
self; that is, he will only get the cash equivalent whose 
value is less than the principal in this case.

3.2 � Examples

This section we give an example to better understand 
Phoenix option.

For convenience, we do not consider the risk-free inter-
est rate.

First, we summarize some important parameters used 
in the examples (see Table 1).

(1) The closing price of the underlying equity is equal 
to or greater than the initial price on the first auto call 
observation date.

Date Closing price Payment 
per note

1st interest observation date 52 15
2nd interest observation date 35 0
3rd interest observation date and 1st 

autocall observation date
51 1015

Total payment: 1030

(2) Notes are not called and the final price is greater 
than the trigger price.

Date Closing price Payment 
per note

1st interest observation date 41 15
2nd interest observation date 30 0
3rd interest observation date and 1st 

autocall observation date
42 15

4th to 11th interest observation date (40, 50) 120
Valuation date (the final date) 45 1015
Total payment: 1165

(3) Notes are not called and the final price is less than the 
trigger price.

Date Closing price Payment per note

1st interest observation date 41 15
2nd interest observation date 30 0
3rd interest observation date 

and 1st autocall observation 
date

42 15

4th to 11th interest observation 
date

(40, 50) 120

Valuation date (the final date) 30 30 × 20 shares = 600
Total payment: 750

4 � Reinforcement learning

Reinforcement learning (RL) is a type of machine learning 
algorithm which can be seen as a third machine learning 
paradigm along with side-supervised learning and unsu-
pervised learning. In other words, RL learns the mapping 
from state to action. For example, given the current position, 
underlying asset price, and some necessary known informa-
tion, this mapping can be used to take optimal action, that 
is, the hedging strategy. Mathematically, RL is formalized 
using ideas from dynamical systems theory, specifically as 
the optimal control of an incompletely known Markov deci-
sion process (MDP).

The main concepts of RL can be summarized as explora-
tion and exploitation. Exploration means that the RL method 
tries different actions which have not been tried before by 
the RL method to obtain better actions, whereas exploitation 
means that the RL method prefers actions that can offer more 
expected rewards. In RL, researchers often use the epsilon-
greedy algorithm to balance exploration and exploitation, 
which we introduce in the next section.

Recently, an increasing number of studies have begun 
to focus on the application of reinforcement learning in 
option hedging (Du et al. 2020; Kolm and Ritter 2019; Cao 
et al. 2021; Vittori et al. 2020), optimal execution (Nev-
myvaka et al. 2006), portfolio optimization (Almahdi and 

Table 1   Parameters of Phoenix options

Principal amount 1000 dollars
Term 12 months
Initial price 50 dollars
Contingent interest payment 15 dollars
Interest observation dates Monthly
Auto call observation dates Seasonally
Interest barrier 40 dollars (80%)
Trigger price 40 dollars (80%)
Averaging dates N/A



Structured products dynamic hedging based on reinforcement learning﻿	

1 3

Yang 2017; Yu et al. 2019), and market making (Spooner 
et al. 2018; Lim and Gorse 2018; Ganesh et al. 2019) etc.

Some important elements in RL are shown as follows:
(1) Random variables
A random variable is a variable whose value is unknown 

or is a function that assigns values to each of the experi-
mental outcomes. In RL, St and At are random variables.

(2) Stochastic process
A stochastic process is a collection of random variables 

indexed by a mathematical set.
(3) Markov chain/process
A Markov chain process is a stochastic process with 

Markov properties. In discrete-time cases, the Markov 
property can be formulated as follows:

where {Xn} is a stochastic process.
The intuition for this definition is that the evolution of 

the Markov process in the future depends only on the pre-
sent state and not on history. Thus, the Markov process is 
also called a process with memoryless properties.

(4) Markov decision process
A Markov decision process (MDP) is a process with 

reward and action functions. In RL, we train an agent by 
simulating agent-environment interactions. The agent is 
the learner or the decision maker, who selects actions at 
every step, and the environment responds to these actions 
with rewards and presets new states to the agent. These 
interactions are shown in Fig. 1.

RL’s job is to obtain policy π, which is, in essence, a 
mapping from states to actions. For example, maintain-
ing the hedging position at a constant 0 is a policy. The 
optimal policy π* satisfies the assumption that the agent 
can maximize the expectation of Gt based on this policy.

where γ is the discount factor, γ ∈ [0,1], and Rt is the reward 
after every step. Note that the limit that γ < 1 is not a neces-
sity in recent studies, which we discuss later.

P(Xn = xn|Xn−1 = xn−1,…X0 = x0) = P(Xn = xn|Xn−1 = xn−1),

Gt = Rt+1 + �Rt+2 + �
2Rt+3 +⋯ =

∞∑

i=1

�
i−1Rt+i,

There are two important value functions in RL: state-
value and action-value.

The state-value and action-value functions are defined 
as follows:

where St represents the state at time t and At represents the 
action at time t according to policy π.

We find that v is the weighted average of q; that is,

and

where the transition probability is p(s′, r| s, a), which means 
that in state s, the agent takes action a, the probability of 
obtaining a reward r, and the state transition to s′ is p(s′, r| 
s, a).

Using these two equations, we can obtain two important 
recursion formulas known as the Bellman equation.

We can then obtain the optimal state-value and action-
value functions as follows:

where v* and q* represent the optimal state-value and action-
value functions, respectively, and π* is the optimal policy.

RL has different algorithms, such as Q-learning, SARSA, 
deep Q Network (DQN). Q-learning aims to maximize the Q 
function in the Bellman equation, and DQN is an improved 
version of Q-learning, mainly to enhance generality by intro-
ducing neural networks. This study used the SARSA algo-
rithm, which we recalled.

SARSA is temporal-difference (TD) learning, which is a 
combination of Monte Carlo (MC) and dynamic program-
ming (DP) ideas. First, let us recall DP and MC.

In RL, DP algorithms are obtained by turning Bell-
man equations into assignments, that is, updating rules by 
improving approximations of the desired value functions. 
Briefly, we can construct a fixed-point equation as follows:

v�(s) ∶= E�[Gt|St = s]

q�(s, a) ∶= E�[Gt|St = s,At = a]

v�(s) =
∑

a

�(a|s)q�(s, a)

q�(s, a) =
∑

r,s�

p(s�, r|s, a)(r + �v�(s
�))

v�(s) =
∑

a

�(a|s)
∑

s�,r

p(s�, r|s, a)[r + �v�(s
�)]

q�(s, a) =
∑

s�,r

p(s�, r|s, a)
[
r + �

∑

a�

�(a�|s�)q�(s�, a�)
]
.

v∗(s) = v�∗ (s) = max
a

∑

s�,r

p(s�, r|s, a)[r + �v∗(s�)]

q∗(s, a) = q�∗ (s, a) =
∑

s�,r

p(s�, r|s, a)
[
r + � max

a�
q∗(s�, a�)

]
,

Fig. 1   The agent-environment interaction
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where Vk is a column vector (Vk(S1), Vk(S2)….Vk(Sn))T
MC methods are ways of solving RL problems based on 

average sample returns. They approximated Gt by sampling, 
as follows:

TD methods combine the benefits of DP (bootstrapping) 
and MC (sampling); that is, TD methods can learn directly 
from raw experience and update the policy after each step 
without waiting until the end of each episode. The policy 
updates of TD methods can be summarized as follows:

SARSA and Q-learning are the two main TD algorithms. 
The policy update is as follows.

The update is performed after every transition 
from a nonterminal state. SARSA uses a quintet tuple: 
(St,At,Rt + 1,St + 1,At + 1). This was the origin of the name.

In this study, we use the SARSA algorithm to train the 
agent, as SARSA learns the Q-value based on the action per-
formed by the current policy instead of the greedy policy, 
which means that the SARSA algorithm can find the opti-
mal hedging strategy faster. Although the characteristics of 
SARSA would make it impossible to find a truly optimal 
solution, we chose SARSA over Q-learning because the 
structured products in our portfolio are quite complex and 
no optimal hedging strategy necessarily exists in our assump-
tions. The other methods are discussed in Sect. 6.3.

5 � Training via simulation

In this section, we introduce our method based on an envi-
ronmental simulation. Before introducing important settings, 
we provide an overall training framework. First, we assume 
that the agent holds one share option and can but never trade 
it, which means that the position of option in the portfolio is 
always constant at 1. At every interest observation date and 
at time 0, the agent will decide to buy or sell a certain num-
ber of underlying equity depending on the current state and 
Q-table. The Q-table can be understood figuratively as an 

vk+1 =
∑

a

�(a|s)
∑

s�,r

p(s�, r|s, a)(r + �vk),

v�(s) = E�[Gt|St = s]

v(St) ← v(St) + �(Gt − v(St)).

v�(s) = E�[Rt+1 + �v�(st+1)|st = s]

v(st) ← v(st) + �[Rt+1 + �v(st+1) − v(st)].

SARSA ∶

q(st, at) ← q(st, at) + �[rt+1 + �q(st+1, at+1) − q(st, at)]

Q − Learning ∶

q(st, at) ← q(st, at) + �[rt+1 + � max
a

q(st+1, a) − q(st, at)]

agent’s action guide, which is essentially a discrete function; 
that is, given a state (St, τ, pos), we can search the Q-table 
for an optimal action.

We performed this training by simulating episodes. In 
each simulation, the price of the underlying asset was gen-
erated randomly. Some of the necessary parameters are 
predetermined, whereas the paths are not. The details are 
presented in Sect. 2.1.

In the training, the current state and Q-Table are all the 
agents know, while in practice, they may know more than 
that, a certain structured product’s rules, for example. While 
we can add more information in the state space to make the 
agent aware of this, it is unnecessary because an increase 
in the number of variables in the state space will lead to an 
extreme increase in the number of episodes; that is, we may 
need more episodes to converge. Therefore, we do not bother 
to do so, and only some confidential variables in the state 
space are sufficient.

Moreover short selling is allowed in our case, and inves-
tors can lend or borrow at a risk-free interest rate.

5.1 � Set up

First, we assume that the underlying equity obeys the geo-
metric Brownian motion (GBM); that is, the price of the 
underlying equity is a stochastic process St, satisfying the 
following stochastic differential equation (SDE):

where Wt is Brownian motion, and r and σ are constants 
that represent the risk-free interest rate and volatility, 
respectively.

Solving the SDE, we can obtain the analytic solution:

where S0 is the initial price of the underlying equity.

dSt = rStdt + �StdWt,

ln St − ln S0 =
(
r −

1

2
�
2
)
t + �Wt,

Table 2   Some important parameters of Phoenix options in training

Principal amount 100 dollars
Term (T) 12 months
Initial price (S0) 100 dollars
Contingent interest payment (CPMT) 5 dollars
Interest observation dates monthly
Auto call observation dates seasonally
Interest barrier 80 dollars (80%)
Trigger price 80 dollars (80%)
Averaging dates N/A
Risk-free interest rate (r) 3%
Volatility of underlying equity 15%
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Then we set some important parameters of Phoenix 
options (see Table 2).

It is necessary to point out that the absolute value of these 
parameters or results are meaningless, unlike the relative 
values. For example, in the following section, we calculate 
the Sharpe ratio of the raw portfolio as 1.87. In practice, if 
an asset’s Sharpe ratio is greater than 1, it is worth investing 
in. However, what matters is the comparison between the 
Sharpe ratio and 1.87 after adopting the hedging strategy.

Next, we set up the action function At, which is our pol-
icy. In general, At is determined by the policy function. One 
of the challenges that arise in RL, and not in other types of 
learning, is the trade-off between exploration and exploita-
tion, as mentioned before. To strike a balance between them 
and fully utilize them, a greedy policy called ε-greedy policy 
is defined as follows:

where u is a random number generated before choosing 
which action to take, and random(a) indicates that if u < ε, 
this policy will choose a random action from the action 
space. In our training, ε was an iteration-dependent variable 
instead of a constant. As the training progressed, ε continued 
to decay. First, we set a relatively high ε of 0.5 for exam-
ple, and the final ε was 0.01. Assuming the number of epi-
sodes is 10k, then at the ith episode, εt is 0.5 − 0.000049 
(i − 1). Through this setting, the model will explore the state 
space thoroughly at the beginning of training, and then with 
ε becoming increasingly smaller, the model exploits the 
Q-Table more.

In our method, we used the Sharpe ratio of the portfolio 
to define the reward. First, we consider the Sharpe ratio. The 
Sharpe ratio is a measure of risk-adjusted return, named after 
William F. Sharpe (1966). It is one of the most used invest-
ment return indices in finance. It is defined as the difference 
between the expected return on the asset and the risk-free 
return divided by the standard deviation of the asset return:

where E[R-Rf] represents the difference between asset 
returns and the risk-free return and Std[R] is the standard 
deviation of the asset return.

Subsequently, we trained the agent to hedge at every 
interest observation date (monthly, in this case). In practice, 
investors are not only concerned about the return at the time 
of maturity, but are also relatively sensitive to the return and 
risk in the holding period. Some indices, such as maximum 
pullback and maximum-pullback days, may also constitute 
the desired reward function in other cases. However, in this 

𝜋𝜀−greedy(s) =

{
random(a) u < 𝜀

argmax q(s, a)
a

u ≥ 𝜀 ,

Sharpe_Ratio =
E[R − Rf ]

Stddev[R]
,

case, as we can obtain a reward at every step, we can use the 
Sharpe ratio to control the return and risk of each period. 
Besides the risk and return at maturity is still pivotal; so, 
we can use the weight related to the due time to express 
varying importance. Different settings of weight are also 
important in the training, and many studies have focused on 
such parameters, which will be discussed later.

The agent hedges the option on every interest observation 
date, and we use a function of distance to maturity and the 
Sharpe ratio of the asset portfolio from t = 0 to the current 
period to define the reward function, that is,

The state function matters because the size of the state 
space directly determines the convergence speed, and the 
state must include all information known to the agents. 
Therefore, according to Kolm and Ritter (2019), the state of 
every step is a triplet:

where St is the underlying equity price at time t; τ is the 
distance to maturity T-t; and pos is the underlying equity 
position at time t. In the real world, as previously discussed, 
the agent knows more than the current state function. How-
ever, this triplet is sufficient for the agent to make decisions, 
owing to the power of reinforcement learning.

Finally, we define the value of portfolio Xt as follows:

where OPTt is the price of the Phoenix option at time t, given 
the underlying equity price St + 1, which is calculated using 
Monte Carlo Simulation, and cpmt is the contingent interest 
payment on every interest observation date. This formula is 
an intuition from that at time t, the investor takes action at, 
his position becomes post, his cash is (Xt − post*St-OPTt), 
and at time t + 1, he may get or pay the interest.

5.2 � Dynamic hedging strategy

As previously mentioned, in our training, the underlying 
asset price is totally stochastic, and in practice, it is gener-
ated at every step rather than predetermined. Our method is 
to obtain a strategy called the Q-Table.

First, we calculate the Sharpe ratio at maturity without 
taking hedging action (see Fig. 2). We simulate 10k times 
and use the average Sharpe ratio as the benchmark.

We conducted 10k simulations and the average Sharpe 
ratio is 1.87.

� = T − t

Rt+1 = sharpe_ratio({Xi}
t
i=0

) ×
12 − �

12 × (� + 1)
.

(St, �, pos),

Xt+1 = post × St+1 + OPTt+1 + cpmt + e
r

T (Xt − post × St − OPTt)

post+1 = post + at+1,
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We then trained the agent using 100k episodes. In other 
words, we simulated 100k underlying equity price paths. 
In fact, this quantity is far from sufficient. Although we 
maintain one decimal place when we calculate St and pos,, 
the number of state spaces of St and pos can be over 500 
and 2000, respectively, given that St ranges from 75 to 125 
and pos ranges from − 100 to 100. Therefore, there can 
be more than 1 m different states without considering the 
due time. It is necessary to mention that if one state never 
appears in the Q-Table before, the hedging strategy is zero, 
that is, it takes no action. The results are shown in Fig. 3. 
The result is bound to show a certain randomness, but it 
is also apparent that there is an upward trend because our 
simulation is “on-policy” too, which means every episode 

almost surely generates a totally different path. The per-
formance was below the benchmark until 75k episodes.

6 � Extensions and discussion

Our method can also be modified according to different pref-
erences. In this section, we introduce two cases. First, we 
consider different time weights; that is, some investors may 
only focus on performance at maturity, so we can assign 
more weight to the reward at maturity. Second, we consider 
other performance indices, such as the Sortino ratio, rather 
than the Sharpe ratio. In practice, investors can define vari-
ous reward functions to satisfy different needs.

6.1 � Time weight

In 2.1, we define reward function as follows:

In practice, investors have different preferences. One may 
only focus on the Sharpe ratio at maturity, and assign more 
weight to the reward at maturity. Thus, we can use the fol-
lowing definitions.

� = T − t

Rt+1 = sharpe_ratio({Xi}
t
i=0

) ×
12 − �

12 × (� + 1)
.

(1)
� = T − t

Rt+1 = sharpe_ratio({Xi}
t
i=0

) ×
12 − �

12 × (5� + 1)

Fig. 2   The Sharpe ratio at maturity without taking any hedging action

Fig. 3   The Sharpe ratio at maturity taking reinforcement learning 
hedging action Fig. 4   Performance using reward function in Eq. 1
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� 12 11 10 9 8 7 6 5 4 3 2 1 0

12−�

12×(�+1)
0 0.007 0.152 0.025 0.037 0.052 0.071 0.097 0.133 0.188 0.278 0.458 1

12−�

12×(5�+1)
0 0.001 0.003 0.005 0.008 0.011 0.016 0.022 0.032 0.047 0.076 0.153 1

It is clear that by this definition, our method will focus 
more on the Sharpe ratio at maturity.

The result is shown in Fig. 4.
In this training, less than 10k iterations made the Sharpe 

ratio at maturity over the benchmark because the weight at 
maturity is relatively high.

In other methods, we can set all weights equal to 0 except 
the weight at maturity; we cannot do so in RL because of the 
essence of RL. However, we can use functions that approach 
zero to achieve this goal.

In traditional RL, the discount rate γ is typically set 
between 0 and 1. The discount rate determines the present 
value of future rewards. If γ = 0, the agent is myopic. In 
general, acting to maximize immediate rewards can reduce 
access to future rewards, so that the return is reduced. We 
cannot guarantee that we can obtain the same reward the 
next time we take the same action because the environment 
is stochastic. The more we consider the future, the greater 
the uncertainty. Therefore, in most cases, γ was set between 
0 and 1 to avoid considering the future. In addition, the range 
of γ is partly related to mathematical rationality. If a problem 
is continuous, γ greater than or equal to 1 may render the 
result unable to converge.

Some studies have begun to use γ values greater than 1. 
Pitis (2019) provided normative justification for a depar-
ture from the traditional MDP setting that allows for a state-
action dependent discount factor that can be greater than 
1. Bao et al. (2008) use an incremental sequence as the 
discount factor to tackle the limitations of normal policy-
gradient estimation methods on the imbalance of bias and 
variance.

In our method, we use an incremental state-dependent 
discount factor to place more weight on the reward at 
maturity.

6.2 � Performance measures

Flexible performance measures allow for the training of 
agents to better match investor preferences. Specifically, dif-
ferent indices can be used for various purposes. For example, 
we can use the Sortino ratio, which is a variation of the 
Sharpe ratio, and differentiate harmful volatility from total 
overall volatility by using the asset’s standard deviation of 
negative portfolio returns.

In addition, different utility functions are used. For exam-
ple, the utility function is used in investment.

where E(rP) is the expected return of the portfolio, and σP is 
the standard deviation of the portfolio’s excess return. A is 
an index of investor risk aversion. The extent to which vari-
ance lowers utility depends on A. Risk aversion has a major 
impact on investors’ appropriate risk-return trade-off. Kolm 
and Ritter (2019) used this utility function as the reward 
function.

6.3 � Other RL algorithms

As mentioned previously, the state space in our method is 
combinatorial, stochastic, and enormous. We cannot expect 
to find an optimal policy or optimal value function, even 
given infinite time, to explore every state. In fact, as the 
number of episodes increases, the time required increases 
nonlinearly. For example, in the SARSA method, every step 
the agent searches the Q-Table for the optimal action. How-
ever, after many simulations, the Q-Table can become very 
large. Therefore, searching for an optimal action can also be 
time consuming. Q-learning, another TD control method, 
also faces this problem.

A deep Q-Net (DQN) can solve these problems. In this 
method, only the network, structure, and parameters of 
the deep learning network must be stored. Similar inputs 
result in similar outputs, which means a stronger generali-
zation ability. However, the training results may not con-
verge because of the introduction of nonlinear functions to 
approximate the Q-Table. In this study, we did not compare 
different RL algorithms because the focus was on RL itself 
instead of comparing the efficiency of different algorithms. 
The introduction here provides a choice when the perfor-
mance of SARSA is not good.

7 � Conclusion

In this article, we propose a simple reinforcement learning 
method that can train an agent and obtain a hedging strategy 
that can make the agent gain more rewards than the rewards 
from the “buy and hold” policy.

Subsequently, an example is provided to demonstrate the 
power of RL. We introduced a structural product called the 
Phoenix option. By RL, the Sharpe ratio of investors’ port-
folios at maturity is higher than when no hedging strategy 
is adopted.

U = E(rP) −
1

2
A�2

P
,
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In existing research on reinforcement learning hedging 
strategies, the reward function is relatively fixed; for exam-
ple, Kolm and Ritter (2019) introduced the function property 
term as a regularizer in the reward function. In fact, in the 
real investment world, the utility function is not commonly 
used as a criterion to evaluate good or bad investments, 
while our work considers this by using the Sharpe ratio as 
the reward function, which also allows us to further investi-
gate hedging strategies in real markets in the future.

In our method, an explicit pricing formula is unnecessary; 
however, it can improve the running speed of our algorithm 
to a certain extent. In addition, we do not need a pre-calcu-
lated perfect dynamic hedging strategy, and its existence 
is not a necessity. The strategy for the initial state of the 
algorithm is 0. The algorithm does is to solely explore and 
exploit. When a perfect dynamic hedging strategy does not 
exist, the proposed method can still obtain a better hedging 
strategy with training.

Our method can also be modified according to different 
preferences. In this study, we considered the psychologi-
cal changes of investors in the investment process, that is, 
we controlled for the Sharpe ratio in each period. We also 
considered cases in which investors can focus only on the 
Sharpe ratio at maturity or give it more weight. Further-
more, other performance measures, such as the Sortino ratio 
instead of the Sharpe ratio, are also applicable in this model.

The power of RL is significantly higher than that. Com-
pared with other theories used to make decisions in finance, 
such as the stochastic control theory, RL can fully utilize 
historical data and even generate more data, and with explo-
ration and exploitation, there can be fewer assumptions and 
better performance.

Our approach also has some drawbacks in that we do not 
use real market data because of product complexity. Based 
on our work, more research can be conducted. In addition 
to the expansions mentioned in Sect. 5, that is, different 
weights, performance measures, and RL algorithms, we can 
use historical data to generate the training and test sets in 
the presence of transaction costs. Another possible research 
direction would be to use parallel algorithms to increase 
training speed.
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